X^2+9y^2=144

Simple and best practice solution for X^2+9y^2=144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+9y^2=144 equation:



X^2+9X^2=144
We move all terms to the left:
X^2+9X^2-(144)=0
We add all the numbers together, and all the variables
10X^2-144=0
a = 10; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·10·(-144)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*10}=\frac{0-24\sqrt{10}}{20} =-\frac{24\sqrt{10}}{20} =-\frac{6\sqrt{10}}{5} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*10}=\frac{0+24\sqrt{10}}{20} =\frac{24\sqrt{10}}{20} =\frac{6\sqrt{10}}{5} $

See similar equations:

| X°2+9y^2=144 | | 7x+6/4=2x−3/5 | | 4x+12=354 | | 2x=720 | | 90+(5x-2)+(x^2+8)=180 | | 2x^2-70+12=0 | | x²+16x-36=0 | | (2x+10)^2​​=49 | | 9(p*4)=-18 | | 7/2p-(p+4)=6 | | 2p^2-70+12=0 | | 8x+3=4x+21 | | 5x-10=9(x-2) | | 4-1/2x=7+3 | | 8x–3=4x–21 | | 3x+8=+12 | | 8w+14w–5=50 | | 2.5+5x=0 | | 0.000517=k*0.0155*0.00211 | | 21/40=3/4c | | 7d=8d-2 | | x*x*x=2 | | 6^x-7/6^x=6 | | 6^x-7(6^-x)=6 | | f(9)=5(9)+14 | | 0.8=(x/55*0.86*(0.86-x) | | 10y+29=7y+19 | | 6(x+2)=1 | | -3/7(x+5)=3+2x | | a=6,a2=30,a2 | | 2t^2+18=0 | | 6y+18=6y+18 |

Equations solver categories